Furan Prediction in Transformer Oil using Artificial Neural Network
نویسنده
چکیده
Transformers are one of the most critical and essential components of electricity transmission and distribution. The life of a transformer is determined by the life of its paper insulation and transformer oil. To maximize the lifetime and efficiency of transformers, it is essential to be aware of possible faults that may occur and to know how to prevent them. One of the major faults in transformer is thermal degradation of the oil and paper insulation in the transformer. The degradation of paper insulation evolves a furan compounds. Furan compounds will reduce the life of transformers. In this paper, a prediction of furan content in transformer oil has been proposed. First, stepwise regressions are made through curve fitter tool based on the relation between transformer oil parameters and furan. Then prediction is performed using linear layer design neural networks through transformer oil quality parameters and dissolved gas as inputs. In order to optimize large solid insulation assessments costs and estimate the life of the transformer.
منابع مشابه
Drilling Stuck Pipe Prediction in Iranian Oil Fields: An Artificial Neural Network Approach
متن کامل
Surface Tension Prediction of Hydrocarbon Mixtures Using Artificial Neural Network
In this study, artificial neural network was used to predict the surface tension of 20 hydrocarbon mixtures. Experimental data was divided into two parts (70% for training and 30% for testing). Optimal configuration of the network was obtained with minimization of prediction error on testing data. The accuracy of our proposed model was compared with four well-known empirical equations. The arti...
متن کاملArtificial Intelligence for prediction of porosity from Seismic Attributes: Case study in the Persian Gulf
Porosity is one of the key parameters associated with oil reservoirs. Determination of this petrophysical parameter is an essential step in reservoir characterization. Among different linear and nonlinear prediction tools such as multi-regression and polynomial curve fitting, artificial neural network has gained the attention of researchers over the past years. In the present study, two-dimensi...
متن کاملAn Artificial Neural Network Model for Prediction of the Operational Parameters of Centrifugal Compressors: An Alternative Comparison Method for Regression
Nowadays, centrifugal compressors are commonly used in the oil and gas industry, particularly in the energy transmission facilities just like a gas pipeline stations. Therefore, these machines with different operational circumstances and thermodynamic characteristics are to be exploited according to the operational necessities. Generally, the most important operational parameters of a gas pipel...
متن کاملIdentifying Flow Units Using an Artificial Neural Network Approach Optimized by the Imperialist Competitive Algorithm
The spatial distribution of petrophysical properties within the reservoirs is one of the most important factors in reservoir characterization. Flow units are the continuous body over a specific reservoir volume within which the geological and petrophysical properties are the same. Accordingly, an accurate prediction of flow units is a major task to achieve a reliable petrophysical description o...
متن کامل